AI Technology
πŸ—ΊοΈ Roadmap

AI Technology Roadmap

A comprehensive learning path for building production-ready AI applications with modern frameworks and tools.

πŸ—ΊοΈ Learning Path

πŸ—οΈ Phase 1: Fundamentals

Python & APIs
Prompt Engineering
OpenAI/Anthropic APIs
β†’

πŸ¦œπŸ”— Phase 2: LLM Frameworks

LangChain Core
LangGraph Workflows
Component Architecture
β†’

πŸ—„οΈ Phase 3: Vector Databases

Chroma/FAISS
Pinecone/Qdrant
Embedding Models
β†’

πŸ” Phase 4: RAG Systems

Document Processing
Retrieval Strategies
Context Optimization
β†’

πŸ€– Phase 5: AI Agents

State Management
Multi-Agent Systems
Tool Integration
β†’

⚑ Phase 6: Production Deployment

API Development
Performance Optimization
Security & Monitoring

πŸ“š Technology Stack

Foundation Layer πŸ—οΈ

Essential skills and tools for AI development:

Core Skills

Development Environment

  • VS Code + Python Extensions
  • Jupyter Notebooks
  • Git & Version Control

Framework Layer πŸ¦œπŸ”—

Primary frameworks for building LLM applications:

LangChain Ecosystem

LangGraph Advanced


Data Layer πŸ—„οΈ

Vector databases and retrieval systems:

Vector Databases

Document Processing

  • Text Splitters - Chunking strategies
  • Embeddings - OpenAI, Sentence Transformers
  • Metadata Management - Enrichment and filtering

Application Layer πŸš€

Complete AI application patterns:

RAG Systems

  • Basic RAG - Document Q&A
  • Advanced RAG - Multi-hop reasoning
  • Conversational RAG - Chat with documents

AI Agents

  • Tool Agents - Function calling
  • Multi-Agent - Collaborative systems
  • Human-in-the-Loop - Supervised workflows

Specialized Applications

  • Text-to-SQL - Database querying
  • Code Generation - Development assistants
  • Content Creation - Automated writing

Production Layer ⚑

Deployment and optimization:

API Development

  • FastAPI - RESTful APIs
  • Streamlit - Quick demos
  • Gradio - ML interfaces

Performance

  • Caching Strategies
  • Batch Processing
  • Async Operations

Security & Monitoring

  • API Key Management
  • Rate Limiting
  • Cost Tracking

🎯 Quick Start Paths

For Beginners 🌱

  1. Start Here: Python Basics
  2. LLM APIs: OpenAI Integration
  3. First App: LangChain Introduction

For Developers πŸ’»

  1. Framework: LangChain Core
  2. Vector DB: Choose Database
  3. RAG System: Build Q&A App

For Advanced Users πŸš€

  1. LangGraph: Advanced Workflows
  2. Production: Deployment Guide
  3. Optimization: Performance Tuning

πŸ”§ Current Content Organization

LangChain Section

Location: /ai-tech/langchain/

LangGraph Section

Location: /ai-tech/langgraph/

Specialized Topics


Choose your path above and start building! Each section includes practical examples and production-ready code.