AI Technology
Introduction

LangChain

LangChain is a framework for building applications powered by Large Language Models. It provides the essential components and interfaces to connect LLMs with external data sources and tools.

🎯 What You'll Learn Here

Core Components πŸ“¦

LangChain provides essential building blocks:

  • Models - Different types of LLMs and how to use them
  • Prompts - Crafting effective prompts and templates
  • Output Parsers - Structuring LLM outputs

Main Guide πŸ“š

Explore our comprehensive LangChain guide covering:

  • Framework Overview - Core concepts and architecture
  • Vector Databases - Complete comparison and implementation
  • RAG Applications - Building retrieval-augmented generation systems
  • Best Practices - Performance optimization and security

πŸš€ Quick Start

Installation

pip install langchain langchain-openai

Basic Example

from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
 
# Initialize the model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
 
# Create a prompt
prompt = ChatPromptTemplate.from_template(
    "Tell me a joke about {topic}"
)
 
# Create a chain
chain = LLMChain(llm=llm, prompt=prompt)
 
# Run the chain
result = chain.run("programming")
print(result)

Choose a section above to dive deeper into specific LangChain concepts!